Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Biosensors (Basel) ; 13(4)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: covidwho-2295971

RESUMEN

Herein, we report results of the studies relating to the development of an impedimetric, magnetic bead-assisted supersandwich DNA hybridization assay for ultrasensitive detection of Neisseria gonorrhoeae, the causative agent of a sexually transmitted infection (STI), gonorrhea. First, a conductive ink was formulated by homogenously dispersing carboxylated multiwalled carbon nanotubes (cMWCNTs) in a stable emulsion of terpineol and an aqueous suspension of carboxymethyl cellulose (CMC). The ink, labeled C5, was coated onto paper substrates to fabricate C5@paper conductive electrodes. Thereafter, a magnetic bead (MB)-assisted supersandwich DNA hybridization assay was optimized against the porA pseudogene of N. gonorrhoeae. For this purpose, a pair of specific 5' aminated capture probes (SCP) and supersandwich detector probes (SDP) was designed, which allowed the enrichment of target gonorrheal DNA sequence from a milieu of substances. The SD probe was designed such that instead of 1:1 binding, it allowed the binding of more than one T strand, leading to a 'ladder-like' DNA supersandwich structure. The MB-assisted supersandwich assay was integrated into the C5@paper electrodes for electrochemical analysis. The C5@paper electrodes were found to be highly conductive by a four-probe conductivity method (maximum conductivity of 10.1 S·cm-1). Further, the biosensing assay displayed a wide linear range of 100 aM-100 nM (109 orders of magnitude) with an excellent sensitivity of 22.6 kΩ·(log[concentration])-1. The clinical applicability of the biosensing assay was assessed by detecting genomic DNA extracted from N. gonorrhoeae in the presence of DNA from different non-gonorrheal bacterial species. In conclusion, this study demonstrates a highly sensitive, cost-effective, and label-free paper-based device for STI diagnostics. The ink formulation prepared for the study was found to be highly thixotropic, which indicates that the paper electrodes can be screen-printed in a reproducible and scalable manner.


Asunto(s)
Técnicas Biosensibles , Gonorrea , Nanotubos de Carbono , Humanos , Neisseria gonorrhoeae/genética , Nanotubos de Carbono/química , Tinta , ADN/análisis , Gonorrea/diagnóstico , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Electrodos
3.
Biosensors (Basel) ; 11(5)2021 May 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1223947

RESUMEN

Molecular diagnostics has been the front runner in the world's response to the COVID-19 pandemic. Particularly, reverse transcriptase-polymerase chain reaction (RT-PCR) and the quantitative variant (qRT-PCR) have been the gold standard for COVID-19 diagnosis. However, faster antigen tests and other point-of-care (POC) devices have also played a significant role in containing the spread of SARS-CoV-2 by facilitating mass screening and delivering results in less time. Thus, despite the higher sensitivity and specificity of the RT-PCR assays, the impact of POC tests cannot be ignored. As a consequence, there has been an increased interest in the development of miniaturized, high-throughput, and automated PCR systems, many of which can be used at point-of-care. This review summarizes the recent advances in the development of miniaturized PCR systems with an emphasis on COVID-19 detection. The distinct features of digital PCR and electrochemical PCR are detailed along with the challenges. The potential of CRISPR/Cas technology for POC diagnostics is also highlighted. Commercial RT-PCR POC systems approved by various agencies for COVID-19 detection are discussed.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/instrumentación , COVID-19/diagnóstico , Pruebas en el Punto de Atención , Reacción en Cadena de la Polimerasa/instrumentación , SARS-CoV-2/aislamiento & purificación , Animales , Prueba de Ácido Nucleico para COVID-19/métodos , Sistemas CRISPR-Cas , Diseño de Equipo , Humanos , Reacción en Cadena de la Polimerasa/métodos , SARS-CoV-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA